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Abstract
BERT has achieved remarkable results across vari-
ous language understanding benchmarks, suggest-
ing that it captures structural information about
language. In this work, we conduct a series of
experiments to examine the elements of English
language structure learned by BERT. Our findings
reveal that BERT’s lower layers capture phrase-
level information in its phrasal representations.
Additionally, BERT’s intermediate layers encode
a rich hierarchy of linguistic information, with sur-
face features at the bottom, syntactic features in
the middle, and semantic features at the top. Fur-
thermore, BERT requires deeper layers to handle
long-distance dependency information, such as
tracking subject-verb agreement. This study con-
tributes to the growing body of research aiming to
enhance our understanding of BERT’s inner work-
ings and the extent of its language understanding
capabilities.

1. Introduction
As we find ourselves at the cutting edge of AI advancement,
ChatGPT has attracted considerable attention due to its re-
markable performances. Before debating whether a Large
Language Model (LLM) like ChatGPT exhibits human-level
intelligence or language learning capabilities, we must first
investigate what representations it has acquired and its learn-
ing process.

Noam Chomsky (1957) introduced the groundbreaking con-
cept of ”transformational-generative grammar,” suggesting
that humans inherently possess the capacity to process and
generate hierarchical structures in language. With the evolu-
tion of neural networks, researchers have explored whether
these networks can learn implicit hierarchical structures for
syntactic and semantic processing from sequential inputs.

Looking back at the history of neural networks for lan-
guage processing, Elman initially introduced the idea of in-
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corporating time implicitly into representational structures,
developing the Simple Recurrent Network (SRN) for effi-
cient sequence processing. Subsequently, enhanced versions
of Recurrent Neural Networks (RNNs) allowed models to
process text sequences while retaining memory of prior in-
puts. These architectures achieved considerable success
in sequence-to-sequence tasks. Bahdanau et al. (2014)
introduced attention mechanisms, revolutionizing NLP by
enabling models to assign varying importance to different
parts of the input sequence, thereby improving their ability
to capture long-range dependencies. Vaswani et al. (2017)
presented the transformer architecture, which relied exclu-
sively on self-attention mechanisms and showcased excep-
tional performance in NLP tasks. This architecture laid
the groundwork for many contemporary LLMs, including
ChatGPT.

Understanding transformer-based models has become in-
creasingly complex compared to its predecessors due to
the exponential growth in size. Thus, interpretability of
transformer-based models has surfaced as a crucial area of
research in the field.

In this project1, we investigate BERT(Bidirectional En-
coder Representations from Transformers), a prominent
transformer-based model that received substantial attention
before ChatGPT’s debut. (Devlin et al., 2018) Although it
utilizes distinct training approaches compared to ChatGPT,
the underlying architecture is similar, providing valuable
insights into how transformer-based language models learn
hierarchical representations during the training phase.

2. Related Work
In Belinkov’s survey (2019), various methods have been
explored to study the syntactic representation within neural
networks. One widely used approach is visualization. El-
man was the first to demonstrate that Simple Recurrent Net-
works (SRNs) can acquire word representations reflecting
both lexical and syntactic categories via hierarchical cluster-
ing (Elman, 1990). He also pioneered the visualization of
hidden unit activations in SRNs and their correspondence to
specific grammatical relations, such as number agreement

1Code is publicly accessible at https://github.com/
LLM-CCM/Lexical-Syntactic-Structure-LLM
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(Elman, 1991). Subsequent research has built upon this
tradition. Brunner et al. (2018) trained an RNN encoder in
a multitask learning setup and visualized the clustering of
sentence embeddings. Karpathy et al. (2015) presented anal-
ysis and visualization techniques for character-level RNNs.
Linzen et al. (2016) studied the number agreement Long
Short-Term Memory (LSTM) network’s inner mechanisms
by examining its activation in response to particular syntac-
tic structures. However, it is worth noting that assessing
the quality of these visualizations remains a challenge. (Be-
linkov & Glass, 2019)

Probing is another widely-used method for examining a lan-
guage model’s ability to understand syntax by diagnostic
classifiers known as probes. These classifiers are designed to
predict specific linguistic properties such as parts-of-speech,
from word, phrase, or sentence representations of a pre-
trained model. Probes trained on various representations
have demonstrated remarkable accuracy in tasks involv-
ing morphological and part-of-speech information, as well
as syntactic and semantic information, highlighting the ef-
fectiveness of these approaches in language understanding
tasks.(Belinkov & Glass, 2017; Peters et al., 2018; Tenney
et al., 2019). To assess the quality of a probe, Zhang and
Bowman (2018) introduced random representation base-
lines. Hewitt and Liang (2019) further suggested control
tasks and argued a proficient probe should exhibit selec-
tivity, characterized by high linguistic task accuracy and
low control task accuracy. Later, Conneau and Kiela (2018)
from Facebook AI Research presented SentEval, a widely
accepted framework for evaluating the quality of universal
sentence representations. In our study, we employ the Sen-
tEval toolkit to construct a binary probe classifier, adhering
to the suggested hyperparameter space.

Everaert et al. (2015) suggest that subject-verb agreement
exemplifies the concept that words in sentences follow
”structures, not strings.” Early analysis on the syntactic
capabilities of neural networks primarily focused on the
long-distance agreement between subjects and verbs, as de-
scribed in (Linzen & Baroni, 2021). Linzen (2016) first
devised the number prediction task to examine syntactic
representation in a straightforward manner. This involved
introducing experiments with an increasing number of in-
tervening nouns between the subject and the verb. These
intervening nouns, called attractors, were identified as the
primary source of occasional errors in language production
(Bock & Miller, 1991) and comprehension (Nicol et al.,
1997) for both models and humans. To accurately predict
the verb’s number, the neural network must implicitly ana-
lyze the sentence structure and avoid being misled by the
nearby, yet irrelevant attractor.

Linzen’s experiments revealed that as the number of attrac-
tors increased, accuracy decreased, but still remained robust

at 82%. (Linzen et al., 2016) Bernardy and Lappin (2017)
demonstrated that GRU and CNN models could also suc-
cessfully handle the number prediction task, suggesting that
this outcome is generalizable across various deep neural
network models.

Subsequently, Goldberg (2019) took one important step
forward to examine BERT, an attention-based model, and
found that the model effectively captures syntactic informa-
tion for subject-verb agreement. Building on Goldberg and
Linzen’s work, Jawahar et al.(2019) performed layer-by-
layer tests on BERT, accounting for the number of attractors.
We continued this line of research and carried out a more
comprehensive analysis.

3. Phrasal Representation
(Peters et al., 2018) attempted to dissect contextual word em-
beddings to understand the nature of information captured
at both syntax and semantics levels. These embeddings
have gained popularity due to their ability to comprehend
and capture meanings based on contextual cues from their
surroundings. However, the results of their study do not di-
rectly apply to the newer modeling architectures supported
by Transformers, such as BERT. Even if we assume that
these results may be applicable, given the complexity of
these models, it becomes challenging to analyze where and
how this knowledge is being captured.

The authors proposed various methods to investigate, ana-
lyze, and comprehend the structure, functioning, and supe-
rior performance of these models in linguistic tasks. They
utilized span representations to capture phrase-level or span-
level information. Building upon these investigations, our
approach follows the same idea of extracting span represen-
tations from each layer of BERT. This approach can help us
answer the crucial question we aim to investigate: whether
Transformer-based models like BERT capture span-level
information and how this information is distributed across
layers.

3.1. Methodology

We utilize the CoNLL 2000 chunking dataset, randomly se-
lecting 3000 labeled chunks and 500 non-chunk spans. The
investigation method begins with the process of extracting
span representations. This process involves capturing the
representation at each layer l for a token sequence si, ....sj ,
denoted as s(si, sj). To achieve this, we concatenate the
first and last hidden vector representations at each layer,
along with their element-wise multiplication and difference.

To visualize the span representations layer by layer, we
employ t-SNE, a dimensionality reduction algorithm that
represents the embeddings in a 2D space. The resulting
t-SNE visualizations per layer are depicted in the attached
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Figure 1. 2D t-SNE plot of span embeddings computed from the layers of BERT.

Figure 2. Clustering performance of span representations obtained from different layers of BERT.

Figure 1. Additionally, to support our observations, we
perform k-means clustering on the span representations,
with k representing the different chunk types.

The final step involves using the NMI (Normalized Mutual
Information) metric to compare the information captured
among layers.
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Figure 3. Clustering performance visualization from different lay-
ers of BERT.

3.2. Results

Our observations from Figure 1 and 3 indicate that BERT
predominantly captures phrase-level information in the
lower layers, and this information gradually diminishes as

we move to higher layers. In the lower layers, the span rep-
resentations exhibit a tendency to map chunks together with
their corresponding underlying category. To quantify this
observation, we conducted k-means clustering on the span
representations using k = 10, representing the number of
distinct chunk types. The evaluation of the resulting clusters
using the NMI metric in Figure 2 reaffirms that the lower
layers of BERT better encode phrasal information compared
to the higher layers.

3.3. Limitation:

While the result provides valuable insights into visualizing
and qualitatively analyzing span representations, it would
benefit from incorporating quantitative analysis methods to
strengthen the analysis of the captured information. Ad-
ditionally, the limitations of the dataset used in the study
may restrict the generalizability of the results. To enhance
the arguments regarding linguistic structure representation,
further analysis using diverse and more comprehensive data
sources is recommended. It is important to note that the
current method primarily provides a superficial examination
of the representations and may not fully capture syntactic
and semantic dependencies across longer spans. Therefore,
it is necessary to combine these findings with other methods
to draw more conclusive insights.

4. Syntactic and Semantic Understanding via
Probing

In the past, traditional machine learning methods for lan-
guage understanding and natural language processing relied
on incorporating linguistic features, such as part-of-speech
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tags, syntactic dependencies, and frequency metrics. These
features were well-established and provided interpretable
insights into the underlying linguistic properties of text.
However, with the advent of large language models, the use
of traditional linguistic features has diminished.

Contemporary NLP approaches leverage word representa-
tions derived from large language models. These word
representations, despite their superior performance, have
one drawback: these models are black boxes, lacking inter-
pretability of the complex patterns they capture. To address
these issues, researchers have advocated for the use of prob-
ing techniques.

Probing involves employing specific diagnostic tasks to
extract hidden linguistic knowledge from these black box
representations.

4.1. Overview of probing task

Probing tasks, also known as diagnostic tasks, have been
widely used in previous studies by (Yossi Adi, 2018), and
(Conneau et al., 2018) to uncover the linguistic features
encoded by neural networks. These tasks involve setting
up auxiliary classification tasks where the final output of
a model is used as features to predict a specific linguistic
phenomenon. If the auxiliary classifier performs well in
predicting the linguistic property, it indicates that the orig-
inal model likely encodes that property. In this study, we
will employ probing tasks to evaluate the ability of individ-
ual layers in language models to encode different types of
linguistic features.

4.2. Exploring Syntactic Structure with Basic Probes:
Initial Intuition

(Guillaume Alain, 2016) suggested that it is possible to ex-
plore the interpretability of deep neural networks using Lin-
ear Classifier Probes, which can be used to investigate the
hidden representations being captured by the layers. They
suggested that early layers capture low-level features, while
deeper layers capture high-level features and dependencies.

(Tenney et al., 2019) investigated the extent to which contex-
tualized word representations encode sentence-level struc-
tural information. They proposed a probing framework that
required the model to predict linguistic properties related
to sentence structure, including part-of-speech tags, con-
stituent labels, and dependencies. They compared the rep-
resentations at different layers of the models to investigate
whether sentence structure information is present across
layers. The models achieved high accuracy on the prob-
ing tasks, indicating their ability to capture syntactic and
semantic properties.

(Hewitt & Liang, 2019) endorsed probing as a method to in-
terpret representations learned by machine learning models

but raised concerns about the accuracy of its interpretations.
They posed a serious question about whether the probes are
simply getting good at learning the task itself. It is impor-
tant to avoid overestimating the extent to which high probe
accuracy reflects the properties of the representation. They
proposed an approach called control tasks to enhance the
interpretability of the probing results.

Control Tasks aim to measure the extent to which a probe’s
performance reflects the linguistic property being probed.
The Probe Confounder Problem suggests that complex neu-
ral networks are capable of memorizing a large number of
labeling decisions independent of probing tasks. As a result,
probes may receive high accuracy without truly reflecting
the represented property. To address this issue, Hewitt and
Liang (2019) introduced the concept of selectivity, which
helps evaluate probes and raises concerns about representa-
tional qualities.

4.2.1. METHODOLOGY

In this paper, we design a low-dimensional MLP probe that
can be used to capture part-of-speech tagging linguistic
tasks while being both selective and non-selective.

We have selected part-of-speech (POS) tagging as the spe-
cific NLP task for our study. To accomplish this, we will
utilize a portion of the English Web dependency treebank
from the Universal Dependencies project. This dataset pro-
vides valuable information such as POS labels, morphologi-
cal features (tense, gender, number, etc.), and dependency
labels (subject, object, etc.), making it suitable for exploring
different aspects of language.

In order to measure the selectivity of layers in capturing
linguistic information, we introduce a control task that is
unrelated to the part-of-speech (POS) tagging task. Follow-
ing the approach suggested by Hewitt and Liang (2019),
we assigned a random POS tag to each word identity based
on the distribution of these tags in the dataset. Importantly,
each word identity consistently receives the same tag every
time it appears.

During training and testing, the layers of the model will
be tasked with predicting the assigned tag based on the
word embeddings. It is worth noting that the assigned tag
is solely determined by the word identity and is therefore a
deterministic function. Consequently, if a layer exhibits high
selectivity, it indicates that the embedding has forgotten or
disregarded certain information related to the word identity,
as the predicted tag accuracy on the control task will differ
from that on the actual POS tagging task. By comparing
the probed accuracy of the layers on the POS task and the
control task, we can assess the selectivity of each layer in
capturing POS-specific information.
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4.2.2. RESULTS

The findings in Figure 4 and 5 from the probing tasks indi-
cate that BERT’s representations do capture structural infor-
mation to some extent. However, the results vary depending
on the experimental design employed. In one design, using
a probing classifier without control tasks, it is observed that
all layers of BERT exhibit high levels of syntactic informa-
tion, with the middle layers demonstrating the most accurate
representation of the structure. On the other hand, another
design incorporates a control task to guide the probing clas-
sifier and reveals that although the classification accuracy
of the probes decreases with deeper layers, the selectivity
score increases. It is worth noting that popular probe design
choices tend to yield high accuracy in the control task but
low selectivity in the probes, indicating that they are capable
of memorizing a large number of decisions without being
motivated by the underlying representation. This suggests
that the deeper layers, which exhibit high selectivity, contain
the most informative representations.
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Figure 4. Probing Task performance visualization without Selec-
tivity.

4.2.3. LIMITATIONS

The probing method used in this study, offers valuable in-
sights into enhancing the interpretability of probing results.
However, it is important to acknowledge that this approach
has certain limitations. While POS tags contribute to the
syntactic structure of a sentence, the method may not be
applicable or generalizable to all types of probing tasks and
linguistic properties.

The results obtained from the probing tasks demonstrate that
some structural information is indeed captured by BERT’s
representations. Additionally, the findings indicate that the
initial layers of BERT contain more syntactic information
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Figure 5. Probing Task performance visualization with Selectivity.

compared to deeper layers for parts-of-speech tasks. How-
ever, these results alone may not be satisfactory for fully
understanding the syntax and semantics of BERT for lan-
guage understanding.

Therefore, there is a need for better probes or probing frame-
works that can delve into the hidden representations of
BERT from multiple dimensions. To address this, the study
employs complicated probes from the Facebook research
SentEval tool to extract hidden representations from each
layer of BERT, aiming to gain a more comprehensive un-
derstanding of the model’s internal structure. (Conneau &
Kiela, 2018)

4.3. Exploring Representation Interpretability with
Complex Probes: Further Analysis

(Conneau et al., 2018) proposed ten probing tasks to as-
sess the linguistic properties captured by sentence embed-
dings. These tasks encompass surface, syntactic, and se-
mantic dimensions, providing a comprehensive evaluation
of language models. The surface tasks include SentLen
(sentence length) and WC (word content). Syntactic tasks
involve BShift (word order sensitivity), TreeDepth (depth
of syntactic trees), and TopConst (sequence of top-level
constituents). Semantic tasks encompass Tense (tense infor-
mation), SubjNum and ObjNum (subject and direct object
number), SOMO (sensitivity to noun/verb replacements),
and CoordInv (swapping coordinated clauses).

To evaluate the layers of BERT, the authors utilized the
SentEval toolkit Conneau et al. 2018 and optimized hyper-
parameters to find the best probing classifier. The findings
reveal that BERT exhibits a hierarchical organization of
linguistic signals across its layers. Lower layers primar-
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ily encode surface-level information, middle layers capture
syntactic properties, and higher layers focus on semantic
information. This suggests that BERT’s representations
progressively capture more abstract and complex linguistic
features as we move up the layers.

Using the probing tasks highlights the capability of BERT
to encode a diverse range of linguistic properties. It demon-
strates that the model’s layers have distinct roles in repre-
senting different linguistic dimensions, contributing to our
understanding of how information is captured and organized
in sentence embeddings.

4.3.1. METHODOLOGY

In our study, we have selected two probing tasks from the set
of ten tasks proposed by (Conneau et al., 2018) to investigate
the linguistic signals captured by BERT. Our focus is on
examining both syntactic and semantic understanding, so
we have chosen the TreeDepth probing task for syntax and
the SubjNum probing task for semantics.

For training the probes, we followed the same dataset guide-
lines as suggested by (Conneau et al., 2018). The datasets
consist of 100,000 training instances, 10,000 validation in-
stances, and 10,000 test instances, ensuring a balanced dis-
tribution across the target classes.

The TreeDepth probing task is a classification task where the
objective is to predict the maximum depth of the syntactic
tree for a given sentence. The values range from 5 to 12, and
since sentence length is naturally correlated with sentence
depth, we designed a target bivariate Gaussian distribution
that establishes the relationship between the two. To create
a decorrelated sample, we selected a subset of sentences
that match this distribution.

In the SubjNum task, we focus on the number of subjects
in the main clause, which involves binary classification
between singular (NN) and plural or mass forms (NNS).
We limited our selection to target noun forms with corpus
frequencies between 100 and 5,000, ensuring a balanced
distribution of noun forms across the dataset partitions.

By implementing these two probing tasks, we aim to evalu-
ate how well BERT captures sentence-depth information and
its ability to discern the number of subjects in a sentence.

4.3.2. RESULTS

The results obtained from the probing tasks confirm that
BERT’s representations encompass both structural and se-
mantic information. Consistent with the original paper’s
proposal, the findings suggest that the middle layers of
BERT contain a higher degree of syntactic information,
while the deeper layers exhibit stronger semantic represen-
tations. This implies that certain layers are more specialized

in capturing specific linguistic aspects for performing partic-
ular tasks. However, it also highlights that the other layers
maintain a contextual understanding of linguistic structures
and rules. The distribution of information for linguistic
comprehension, spanning surface-level features, syntax, and
semantics, is observed across multiple layers. Table 1 pro-
vides evidence that the middle layer, particularly layer 7,
achieves the highest probing accuracy in capturing syntactic
representations, while the deeper layers, such as layer 9,
excel in representing semantic features.

Layer TreeDepth (Syntactic) SubjNum (Semantic)
1 32.08 73.97
2 34.67 79.02
3 34.43 79.27
4 33.73 79.49
5 34.19 82.6
6 35.03 86.25
7 35.35 86.09
8 34.46 86.24
9 34.68 86.83
10 34.24 86.21
11 33.2 84.09
12 31.47 82.37

Table 1. In this table, Layer refers to the current layer for which
the representations are being captured, while ”TreeDepth”, and
”SubjNum” denote the test accuracy of these probing tasks for each
BERT Layer.
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Figure 6. Probing Task performance visualization for TreeDepth
Probing.

4.3.3. LIMITATIONS

The study demonstrates that probing tasks effectively cap-
ture linguistic properties in sentence embeddings. However,
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Figure 7. Probing Task performance visualization for SubjNum
Probing.

the analysis can be improved by expanding the range of
probing tasks to cover a broader set of linguistic proper-
ties. While probing tasks provide valuable insights, they
are not sufficient on their own to fully understand how lan-
guage models learn and represent language. Alternative
methods should be explored to gain deeper insights into the
interpretability of these models. Additionally, investigating
linguistic properties at the word-level and document-level
representations would provide a more comprehensive under-
standing. Developing enhanced representational methods is
crucial to extract and interpreting the knowledge obtained
from probing tasks, leading to deeper insights into the en-
coded linguistic properties. In summary, while probing
tasks are valuable, further advancements can be achieved by
expanding the range of tasks, exploring different levels of
linguistic analysis, and developing sophisticated representa-
tional methods.

5. Subject-verb agreement
5.1. Background

While subject-verb agreement is not the only structure-
sensitive dependency, a model’s success in mastering it
can strongly suggest its ability to learn hierarchical struc-
tures.(Linzen et al., 2016) A key issue that arises for models
lacking sensitivity to the structure is the potential for agree-
ment attraction errors. (Bock & Miller, 1991) Agreement
attractors refer to intervening nouns that have a different
number than the subject. The presence of such attractors
necessitates that the model correctly identifies the syntactic
subject’s head corresponding to a specific verb, in order to
select its correct inflected form. It is plausible that selecting
correct forms through simple strategies, such as ”agreeing

with the most recent noun,” could be easily applied by se-
quence models. In numerous datasets, the model might still
exhibit good performance, as the majority of sentences are
simple and follow this heuristic. However, this approach
can be unreliable because agreement attractors may appear
between the subject and verb within the linear arrangement
of a sentence.

Linzen et al. conducted an experiment to evaluate LSTM’s
syntactic capabilities by increasing the number of inter-
vening nouns, resulting in an 82% overall test accuracy.
Goldberg (2019) later demonstrated that BERT effectively
learns syntactic structures for subject-verb agreement, using
various stimuli. Jawahar et al.(2019) expanded on this work
by testing each layer of BERT and controlling the number
of attractors. Our research built upon Jawahar’s method and
carried out a more extensive analysis.

Layer Overall 0 1 2 3 4
1 87.51 90.58 35.4 21.74 21.95 23.36
2 88.98 91.89 40.37 24.11 23.41 22.65
3 89.92 92.64 44.78 28.91 25.02 27.96
4 91.9 94.29 52.93 34.6 30.69 31.15
5 93.1 95.05 62.48 42.4 37.1 35.4
6 93.56 95.38 65.59 44.63 37.1 32.57
7 93.92 95.46 70.55 50.91 40.91 38.23
8 94.23 95.66 72.71 53.51 44.77 41.24
9 93.96 95.46 70.86 53.44 45.7 44.96
10 93.39 94.98 68.69 51.34 43.01 41.59
11 92.49 94.28 64.21 47.41 39.64 35.58
12 91.78 93.71 60.38 46.96 39.93 38.05

Table 2. In this table, Layer refers to the current layer for which
the representations are being captured, while ”Overall” represents
the overall test accuracy for the sva task, and ”0-4” denotes the test
accuracy given that number of intervening nouns in the inputs for
each BERT Layer.

5.2. Methodology

We employed the stimuli developed by Linzen et al. (2016)
and the SentEval toolkit (2018) to optimally configure bi-
nary classifiers. As we increased the number of intervening
nouns, we documented the classifier’s performance based
on representations extracted from each layer of BERT. The
training process consisted of two phases. In the first phase,
we extracted features from the pre-trained BERT model us-
ing the stimuli. In the second phase, we trained the classifier
and assessed its performance.

5.3. Results And Analysis

After conducting the experiments layer by layer, we present
the results in Figure 8 and highlights the best results in Table
2. The graph demonstrates that as the number of intervening
nouns increases, the probe’s performance declines signif-
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Figure 8. Layber by Layer Performance on Subject-Verb Agreement

icantly. In addition, the middle layers exhibit better test
accuracy than both the lower and higher layers, aligning
with the findings discussed in Section 4. Within the middle
layers, deeper layers (layer 8 and 9) display higher accuracy
than relatively lower ones, which indicates deeper layers
may be necessary to learn long-distance dependency. An
intriguing observation is that while the overall performance
remains strong, the test accuracy plummets when an inter-
vening noun is present. For instance, when one intervening
noun is introduced, the accuracy for layer 1 drops to 40%
compared to 90% with no intervening nouns. But the over-
all performance remains largely unaffected by the poorer
performance resulting from increased intervening nouns,
since the number of sentences without intervening nouns
far exceeds the rest, as highlighted in Linzen et al.’s (2016)
analysis.

6. Conclusion
In this paper, we showed that BERT’s phrasal represen-
tations better capture phrase-level information in the
lower layers, and through control tasks in probing and
subject-verb agreement tasks, we found that deeper layers
are essential for effectively modeling syntactic information.
Furthermore, we discovered that BERT creates a hierarchy
of linguistic cues ranging from surface to semantic features.
Our results indicate that BERT’s middle layers possess a
greater amount of syntactic information, while the deeper
layers display more robust semantic representations, in line
with the findings of (Jawahar et al., 2019).

Connection to Computational Cognitive Modeling Our
study aligns with computational cognitive modeling and
human learning by exploring how BERT’s internal repre-
sentations resemble the compositional modeling approach
found in human language learning. Compositional modeling
involves combining smaller linguistic units to create larger
meaningful structures, and we demonstrates that BERT ex-
hibits this capacity.

We further emphasizes the significance of deeper layers in
BERT for capturing long-range dependency information.
This observation is in line with the understanding that hu-
man language learning entails integrating information from
various levels and scales, encompassing local dependencies
and global structures. BERT’s reliance on deeper layers to
capture these dependencies aligns with the idea that humans
also rely on integrating information from multiple levels
to comprehend complex linguistic phenomena. Overall,
these insights advance our understanding of the relationship
between computational models and human cognition.
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